

Customer: YFD

Date: January 14th, 2021

SMART CONTRACT CODE
REVIEW AND SECURITY
ANALYSIS REPORT

This document may contain confidential information about IT systems and the
intellectual property of the Customer and information about potential
vulnerabilities and methods of their exploitation.

The report containing confidential information can be used internally by the
Customer, or it can be disclosed publicly after all vulnerabilities fixed - upon a

decision of the Customer.

Document

Name Smart Contract Code Review and Security Analysis Report for YFD (15 pages)

Approved by Andrew Matiukhin | CTO Hacken OU

Type Vaults

Platform Ethereum / Solidity

Methods Architecture Review, Functional Testing, Computer-Aided Verification,
Manual Review

Github HTTPS://GITHUB.COM/YFDFI-FINANCE/YFD-FARMING-VAULT

Commit A3218A3E62570B5CFE4EC227CE917E54BCAC9B55

Timeline 11TH JAN 2021 – 14TH JAN 2021

Changelog 14TH JAN 2021 - Initial Audit

Table of contents

Document ... 2

Table of contents .. 3

Introduction .. 4

Scope .. 4

Executive Summary ... 5

Severity Definitions ... 7

AS-IS overview .. 8

Conclusion .. 19

Disclaimers .. 20

Introduction

Hacken OÜ (Consultant) was contracted by YFD (Customer) to conduct a Smart
Contract Code Review and Security Analysis. This report presents the findings of
the security assessment of the Customer's smart contract and its code review

conducted between January 11th, 2021 – January 14th, 2021.

Scope

The scope of the project is github repository:
Github HTTPS://GITHUB.COM/YFDFI-FINANCE/YFD-FARMING-VAULT
Commit A3218A3E62570B5CFE4EC227CE917E54BCAC9B55

Files in scope of review

./ Vaultlocking1month.sol

./ Vaultlocking2months.sol

./ Vaultlocking3months.sol

./ Vaultlocking72h.sol

We have scanned this smart contract for commonly known and more specific
vulnerabilities. Here are some of the commonly known vulnerabilities that are

considered:

Category Check Item

Code review ▪ Reentrancy

▪ Ownership Takeover

▪ Timestamp Dependence

▪ Gas Limit and Loops

▪ DoS with (Unexpected) Throw

▪ DoS with Block Gas Limit

▪ Transaction-Ordering Dependence

▪ Style guide violation

▪ Costly Loop

▪ ERC20 API violation

▪ Unchecked external call

▪ Unchecked math

▪ Unsafe type inference

▪ Implicit visibility level

▪ Deployment Consistency

▪ Repository Consistency

▪ Data Consistency

Functional review ▪ Business Logics Review

▪ Functionality Checks

▪ Access Control & Authorization

▪ Escrow manipulation

▪ Token Supply manipulation

▪ Assets integrity

▪ User Balances manipulation

▪ Data Consistency manipulation

▪ Kill-Switch Mechanism

▪ Operation Trails & Event Generation

Executive Summary

According to the assessment, the Customer's smart contracts don’t have critical
vulnerabilities and can be considered secure.

We described issues in the conclusion of these documents. Please read the
whole document to estimate the risks well.

1

Our team performed an analysis of code functionality, manual audit, and
automated checks with Mythril and Slither. All issues found during automated
analysis were manually reviewed, and important vulnerabilities are presented in
the Audit overview section. A general overview is presented in AS-IS section, and

all found issues can be found in the Audit overview section.

Security engineers found 1 lowest severity issues during the audit.

1 Look for details and justification in conclusion section

Insecure Poor secured Secured Well-secured

You are

here1

Graph 1. The distribution of vulnerabilities.

Lowest
100%

Lowest

Severity Definitions

Risk Level Description

Critical
Critical vulnerabilities are usually straightforward to exploit and can
lead to assets loss or data manipulations.

High

High-level vulnerabilities are difficult to exploit; however, they also
have a significant impact on smart contract execution, e.g., public
access to crucial functions

Medium
Medium-level vulnerabilities are essential to fix; however, they can't
lead to assets loss or data manipulations.

Low
Low-level vulnerabilities are mostly related to outdated, unused,
etc. code snippets that can't have a significant impact on
execution

Lowest / Code
Style / Best

Practice

Lowest-level vulnerabilities, code style violations, and info
statements can't affect smart contract execution and can be
ignored.

AS-IS overview

Description

VaultProRewardMonth, VaultProReward, VaultProReward3Months and VaultPr
oReward2Months are the same contract with different values of constants. So,
it can be audited as one contract named VaultProReward***.

Imports

VaultProReward*** contract has 4 imports:

• SafeMath — from OpenZeppelin
• EnumerableSet — from OpenZeppelin
• Ownable — from OpenZeppelin
• Token — is an ERC20 token interface

Inheritance

VaultProReward*** contract inherits Ownable.

Usings

VaultProReward*** contract use:

• SafeMath for uint;
• EnumerableSet for EnumerableSet.AddressSet;

Fields

VaultProReward*** contract has 21 fields:

• address public trustedDepositTokenAddress — deposit token address;
• address public trustedRewardTokenAddress — reward token address;
• uint public constant withdrawFeePercentX100 — withdrawal fee;
• uint public constant disburseAmount — disbursement amount;
• uint public constant disburseDuration — disbursement duration;
• uint public constant cliffTime — the period of time when unstaking is not

available;
• uint public constant disbursePercentX100 — disbursement percent rate;
• uint public contractDeployTime — a timestamp when the contract was

deployed;

• uint public lastDisburseTime — a timestamp of the last disbursement;
• uint public totalClaimedRewards — the total number of claimed

rewards;
• EnumerableSet.AddressSet private holders — a set of the address of

holders;
• mapping (address => uint) public depositedTokens — deposited tokens

amount by address;
• mapping (address => uint) public depositTime — a timestamp of the last

deposit by address;
• mapping (address => uint) public lastClaimedTime — a timestamp of the

last rewards claimed by address;
• mapping (address => uint) public totalEarnedTokens — the total number

of earned tokens by address;
• mapping (address => uint) public lastDivPoints — snapshot of the total

div points;
• uint public totalTokensDisbursed — the total number of disbursed

tokens;
• uint public contractBalance — the number of tokens on the balance of

the contract;
• uint public totalDivPoints — the total div points;
• uint public totalTokens — the total number of deposited tokens;
• uint internal pointMultiplier — the point multiplier;

Functions

VaultProReward*** contract has 13 functions:

• constructor

Description

Initializes the contract. Sets contractDeployTime and lastDisburseTime.

Visibility

public

Input parameters

None

Constraints

None

Events emit

None

Output

None

• addContractBalance

Description

Used by admin to add tokens to the contract balance.

Visibility

public

Input parameters

None

Constraints

o Only owner can call it.
o Tokens should be transferred.

Events emit

None

Output

None

• updateAccount

Description

Used to pay rewards to account.

Visibility

private

Input parameters

o address account — an address of the account;

Constraints

o Tokens should be transferred.

Events emit

o RewardsTransferred(account, pendingDivs);

Output

None

• getPendingDivs

Description

Used to calculate the holder reward.

Visibility

public view

Input parameters

o address _holder — an address of the holder;

Constraints

None

Events emit

None

Output

Returns reward amount.

• getNumberOfHolders

Description

Used to get the number of holders.

Visibility

public view

Input parameters

None

Constraints

None

Events emit

None

Output

Returns the number of holders.

• deposit

Description

Used to deposit tokens.

Visibility

public

Input parameters

o uint amountToStake — an amount of tokens to deposit;

Constraints

o The deposit amount should be greater than 0.
o Tokens should be transferred.

Events emit

None

Output

None

• withdraw

Description

Used to withdraw.

Visibility

public

Input parameters

o uint amountToWithdraw — an amount of tokens to withdraw;

Constraints

o The withdraw amount should be less than or equal to deposited
amount.

o The cliffTime period must be passed.
o Fee should be transferred.
o Tokens should be transferred.

Events emit

None

Output

None

• emergencyWithdraw

Description

Used to withdraw without rewards.

Visibility

public

Input parameters

o uint amountToWithdraw — an amount of tokens to withdraw;

Constraints

o The withdraw amount should be less than or equal to deposited
amount.

o The cliffTime period must be passed.
o Fee should be transferred.
o Tokens should be transferred.

Events emit

None

Output

None

• claim

Description

Used to claim rewards.

Visibility

public

Input parameters

None

Constraints

None

Events emit

None

Output

None

• distributeDivs

Description

Increases total div points.

Visibility

private

Input parameters

o uint amount — an amount of tokens;

Constraints

None

Events emit

o emit RewardsDisbursed(amount);

Output

None

• disburseTokens

Description

Used to disburse tokens.

Visibility

public

Input parameters

None

Constraints

o Only owner can call it.

Events emit

None

Output

None

• getPendingDisbursement

Description

Calculates disbursement amount.

Visibility

public view

Input parameters

None

Constraints

None

Events emit

None

Output

Returns disbursement amount.

• getDepositorsList

Description

Used to get depositors list.

Visibility

public view

Input parameters

o uint startIndex — index from;
o uint endIndex — index to;

Constraints

o startIndex should be less than endIndex.

Events emit

None

Output

Returns depositors info.

Audit overview

 Critical

No critical issues were found.

 High

No high issues were found.

 Medium

No medium issues were found.

 Low

No low severity issues were found.

 Lowest / Code style / Best Practice

1. According to the best practices constants should be named as
UPPER_CASE_WITH_UNDERSCORES.

Conclusion

Smart contracts within the scope were manually reviewed and analyzed with
static analysis tools. For the contract, high-level description of functionality was
presented in As-is overview section of the report.

The audit report contains all found security vulnerabilities and other issues in
the reviewed code.

Security engineers found 1 lowest severity issues during the audit.

Violations in the following categories were found and addressed to the
Customer:

Category Check Item Comments

Code review ▪ Style guide
violation

▪ According to the best practices constants
should be named as
UPPER_CASE_WITH_UNDERSCORES.

Disclaimers

Hacken Disclaimer

The smart contracts given for audit have been analyzed in accordance with the
best industry practices at the date of this report, in relation to cybersecurity
vulnerabilities and issues in smart contract source code, the details of which are
disclosed in this report (Source Code); the Source Code compilation,

deployment, and functionality (performing the intended functions).

The audit makes no statements or warranties on the security of the code. It also
cannot be considered as a sufficient assessment regarding the utility and safety
of the code, bugfree status, or any other statements of the contract. While we
have done our best in conducting the analysis and producing this report, it is
important to note that you should not rely on this report only - we recommend
proceeding with several independent audits and a public bug bounty program
to ensure the security of smart contracts.

Technical Disclaimer

Smart contracts are deployed and executed on blockchain platform. The
platform, its programming language, and other software related to the smart
contract can have its own vulnerabilities that can lead to hacks. Thus, the audit
can't guarantee explicit security of the audited smart contracts.

